层次来教学。低年级要通过操作直观使学生理解每种运算的含义。例如减法,只要通过摆物品和图画等使学生懂得是从一个数里去掉一部分求剩下的部分是多少;高年级再进一步抽象,使学生懂得减法是已知两数和与其中一个加数求另一个加数是多少。高年级教学分数除法也是从乘法的逆运算的角度来理解的,这样就便于在解应用题时实际应用。 2.使学生学会分析数量关系。这是解答应用题的一项基本功。即使是简单应用题也存在着一定的数量关系,绝不能因为应用题简单而忽视对数量关系的分析。分析清楚题里已知条件和问题之间存在着什么样的数量关系,才好确定解决问题的方法。有些简单应用题的数量关系是明显的,学生容易弄清的。例如,“有5只黑兔,又跑来3只白兔,一共有几只兔?”学生很容易弄清,把原有的5只和跑来的3只合并起来,就可以知道一共有几只兔。但是有些简单应用题,学生分析数量关系就困难一些。例如,“有5只黑兔,白兔比黑兔多3只,白兔有多少只?”有些学生往往不清楚题里的数量关系,简单地看到“多3只”就判断用加法,结果与遇到求白兔比黑兔多几只的题发生混淆。因此,教学时最好通过操作、直观使学生弄清题里的数量关系。如下图,引导学生根据题里的条件分析出:白兔的只数多,可以分成两部分,一部分是和黑兔同样多的5只,另一部分是比黑兔多的3只,要求白兔的只数就要把这两部分合并起来,从而要用加法计算。由于通过操作和直观,在学生的头脑中对所学的应用题的数量关系形成了表象,经过多次练习,就能初步形成概括性的规律性的认识。这样教学,学生对每种应用题的数量关系都有一定的分析思路,就不容易发生混淆,也就不需要再教什么计算公式。 还可以举一道分数应用题。例如,“果园里有梨树480棵,占 还有一个判断哪个量是单位1的问题。通过线段图,学生容易理解,梨树的 要把总棵数看作单位1。进一步再分析,题里没有告诉总棵数是多少,知道 用题的数量关系,并且可以防止学生根据一些关键词来机械地判断单位1和套用数量关系式。 3.紧密联系运算的意义来选择运算方法。在分析数量关系的基础上紧密联系运算的意义(或含义),把对运算的意义(或含义)的理解与应用直接联系起来,很容易确定运算方法。例如,当学生分析出要把两个数合并(结合应用题内容具体分析,如上面求白兔的只数的应用题),就联想到用加法;当分析出要从一个数里去掉一部分,就联想到用减法;当分析出要求几个几是多少,就联想到用乘法;当分析出要把一个数平均分成几份求一份是多少或者求一个数里有几个另一个数,就联想到用除法。对于分数应用题也是一样,当分析出要求一个数的几分之几是多少,联想到一个数乘以分数的意义,可以确定用乘法;反过来当分析出一个数(未知数)的几分之几等于多少(已知),要求未知的数(如上面求果树的总棵数的应用题),联想到可直接列方程解,或联想到分数除法的意义,可确定用除法。由于运算的意义(或含义)与分析应用题的数量关系建立起直接联系,学生在解答应用题的过程中一方面加深对运算意义(或含义)的理解,一方面学会应用运算的意义(或含义)来解题,从而提高学生自觉地应用所学的数学知识正确地解决实际问题的能力。 4.培养检验的良好习惯。解答简单应用题同进行四则计算一样,也要注意培养检验的习惯,这样一方面可以提高解题的正确率,另一方面可以为培养检验复合应用题的能力打下初步基础。检验应用题要比检验四则计算复杂一些,首先要重新读题,分析已知条件和所求的问题之间的关系是否正确,然后再看列式、计算、答案是否正确。较高年级还可以通过改编应用题并解答来进行检验。通过检验还可培养学生思维的深刻性,对解答结果的负责态度和自信心。 实践表明,很多城乡的教师按照上述原则和方法教学,收到良好的效果,学生容易接受,解题的正确率高,灵活应用知识的能力较强。但是也有一些教师采用另一种教学方法,即教给学生区分应用题类型,运用解题公式,结果给学生增加了学习难度,出现死记硬套的现象。目前对这个问题还有争论,下面谈谈个人的一点看法: (1)从数学本身看,把简单应用题划分的类型以及概括的解题公式是否科学,还值得研究。简单应用题的内容范围很广,从科学的角度说,研究它的分类是完全可以的,实际上美、日等国也有些数学教育工作者对简单应用题进行分类。但是如何分类差异较大,目前国内流行的分类也不完全一致,因此这还是一个有待深入研究的问题。例如现代数学用笛卡尔积定义乘法,有些实际问题就不好区分被乘数和乘数。而这类问题就没有包括在目前流行的分类之中。把求一个数的几分之几是多少作为一个类型题也欠妥当,因为一个数乘以分数的意义就是求一个数的几分之几是多少,这样的应用题不过是分数乘法的意义的直接应用,根本没有什么分类型的问题。至于有些解题公式是否正确地全面地反映实际也值得研究。例如,所谓“标准量×分率=部分量”,容易使学生误解“部分量”都是小于“标准量”的,从而导致判断哪个量是“标准量”的错误。而且遇到这样的问题只要应用一个数乘以分数的意义就能解决,因此这种公式是多余的。 (2)从唯物辩证观点来看,应用题的数量关系是有内在联系的,分类型、套公式,往往把本来有联系的问题人为地割裂开来,不利于学生掌握。例如,有这样两道应用题:“食堂每天吃20千克面粉,3天吃多少千克面粉?”“食堂每天吃20千克面粉,吃的大米是面粉的3倍,每天吃大米多少千克?”如果分析两题的数量关系,都是求3个20千克是多少,因此要用乘法算。如果要把它们划分为两种不同类型的题,就割断了它们在数量关系上的内在联系,从而不利于学生以简驭繁地掌握应用题的分析和解答方法。 (3)从学生的认知特点来看,也值得研究。低年级学生的认知特点是以具体形象思维为主,教学解应用题同教学其它数学知识一样,也应结合操作、直观,使学生掌握应用题的分析和解答方法,而不宜教给抽象类型、公式,否则学生不理解,就容易死记硬套。在教学实践中常常看到,学生会解答一道应用题,却说不出是“部分数+部分数=总数”,还是“总数-部分数=部分数”。遇到两步应用题就更加困难。例如,“同学们做了30件玩具,自己留下6件,剩下的平均送给幼儿园的3个班,每班分得几件?”第一步是“总数-部分数=部分数”,有些好学生还能说出,而第二步就很难说出“求出的部分数变成了总数”。这些违反儿童认知规律的做法给学生增加了不必要的学习负担。 (4)从现代数学论的原则看,要教学生理解基本概念、基本原理,才能实现最大迁移;强调思维过程,要从以记忆为主的教学方法转到以思维为主的教学方法;注意发挥学生的主体作用,培养学生探究能力。而以教分类型、记公式为主的教学方法正好与上述的原则相违背,妨碍学生对数学基本概念、基本原理的理解和掌握,束缚学生的思维。 当然,提出简单应用题教学不宜分类型记公式的问题,并不意味着在任何情况下都不能教给学生公式。对某些内容在适当的时候教给学生必要的公式,如面积、体积计算公式等,还是可以的,但教学时也要注意使学生理解公式的来源,防止机械的记忆。 总之,简单应用题教学生分类型记公式,涉及培养什么人的问题以及如何提高民族素质的问题,从理论和实践上进行一些深入的探讨,是十分必要的。 关于抓好简单应用题教学还有其它一些问题,将在下面论述。 (二)加强应用题之间的联系 从实质上说,这是应用题的组织结构问题。应用题的组织是否合理,结构是否恰当,对于培养学生的解题能力具有十分重要的意义。过去的数学课本,由于对这个问题处理得不够好,给应用题教学造成一定的困难,直接妨碍学生解题能力的提高。经过近年来的实验研究,比较深刻地认识到,应用题的内容和解法虽然千变万化,但其内在联系十分紧密。只要根据应用题的内在联系,合理地组织教学,可以使学生较好地理解应用题的结构,较快地掌握应用题的分析和解答方法。 1.简单应用题的内在联系。即使简单应用题之间,也有着紧密的联系。下面以两组加减法简单应用题为例加以分析。 ①有5只黑兔,8 ②黑兔和白兔一共有 ③黑兔和白兔一共有 只白兔,一共有 13只,有5只黑兔, 13只,有8只白兔, 多少只兔? 有多少只白兔? 有多少只黑兔? ④有5只黑兔,白兔 ⑤有5只黑兔,8 ⑥有8只白兔,黑兔 比黑兔多3只,有 只白兔,白兔比 比白兔少3只,有 多少只白兔? 黑兔多几只? 多少只黑兔? 从上面6道题中,很容易看出①②③为一组,①是原型题,②③是①的逆思考;④⑤⑥为一组,⑤是原型题,④⑥是⑤的逆思考。同时第一组题与第二组题也有联系。例如,①④的条件和问题虽不相同,但分析数量关系时却要把两个已知数合并,从而要用加法解答。①⑤的条件都相同,但问题不同,数量关系不同,解答方法也不同。编写教材和教学时,不宜把重点放在分类型上,而要逐步地揭示它们的内在联系和区别,使学生更好地掌握题里的数量关系和解答方法。 分数应用题之间、分数应用题与整数应用题之间也有其内在联系。例如,教学分数乘、除法应用题之后,可与整数应用题进行联系。 通过联系对比,可以看出①②③是一组整数应用题,①是原型题;④⑤⑥是一组分数应用题,⑤是原型题。分数应用题分别与整数应用题相对应,数量关系相反,但解答方法是一致的,因为分数乘法的意义扩展了。教学时如能引导学生发现和总结规律,就会加深对两组应用题的理解。 2.复合应用题与简单应用题之间的联系。一般地说,复合应用题都是由几个简单应用题组合而成的,或者说是在简单应用题的基础上扩展起来的。因此它们之间有着密切的联系。但从简单应用题扩展到复合应用题又是个质的飞跃。以两步应用题为例,它们同简单应用题比较,不仅是已知条件增多,而且数量关系也复杂了。一般地说,简单应用题的问题是和两个已知条件直接联系和相对应着的,从两个已知条件可以判断所求的问题就是题里的问题;反过来,问题所需要的条件就是题里所给的条件。而在两步应用题中,问题是和题里所有的已知条件联系着的,是对所有的条件提出来的。这样就形成了问题和所需要的直接条件之间的“分离”现象,也可以说一个直接条件被隐藏起来,而需要根据问题和已知条件的关系把这个所需的条件找出来。从解答的角度说就是要提出一个中间问题。而要解答这个中间问题还要正确地选择已知条件。因此这比解答简单应用题需要较为复杂的分析和综合,需要进行间接的推理(即从两个判断推出一个新的判断)。 例如,两步应用题,“小明画5张画,小华比小明多画3张,他们一共画多少张?”要求两人一共画多少张,必须先知道小明和小华各画多少张,而题里没有直接告诉小华画多少张,所以要先求小华画多少张。这样的分析、推理显然比简单应用题复杂。 至于三步或更多步数的应用题,已知条件就更多,数量关系更复杂,分析推理的步骤也就更多。但分析推理的方法与两步应用题的基本相同。下面着重谈教学两步应用题如何加强与简单应用题的联系。主要有以下两点: (1)解答一些连续两问的应用题。为了给学习两步应用题做好准备,除了打好简单应用题的基础(包括提问题、填条件)外,适当出现一些连续两问的应用题很有好处。这种应用题在向两步应用题过渡方面起着桥梁的作用。在这样的应用题中,关键在第二问,有时缺少一个已知条件,需要到前面的简单应用题里去找,往往正好是前面一题的计算结果;有时第二问中一个已知条件也没有,都要到前面一题里去找。例如,“学校里有8棵杨树,柳树比杨树多3棵,有多少棵柳树?两种树一共有多少棵?”第二问所需的两个已知条件,一个是前面一题的一个已知条件,另一个是前面一题的计算结果。由于适当进行这样的练习,就为两步应用题的分析和解答做了一定准备。 (2)教学两步应用题时由简单应用题引入,然后把它扩展成两步应用题。例如,“①学校买来20张颜色纸,用去14张,还剩多少张?②学校买来12张红色纸和8张黄色纸,用去14张,还剩多少张?”通过比较,使学生看出两步应用题与简单应用题的联系和区别,从而初步体会到两步应用题的结构,明确解答两步应用题必须分两步计算,先提出一个问题,进行计算,再解答原题里的问题。这样学生不仅容易掌握,还有利于激发学生的思考,培养学生分析问题的能力。以后还要经常做一些对比练习。 3.复合应用题之间的联系。这一点更为重要。通过复合应用题间的联系对比,可以加深学生对新学的应用题的结构、分析推理方法等的理解,从而较快地掌握复合应用题的解答方法,产生迁移的效果。复合应用题间的联系是多种多样的,需要进行认真的分析,选取适当的联系的途径,才能收到良好的效果。下面举出加强联系的几个方面的例子。 (1)纵向联系的:有些应用题是由已学的步数较少的应用题扩展而成的。教学时由已学的应用题引入,通过联系比较,很容易看出新的应用题的条件或问题有哪些变化,如何在已学的基础上进一步分析推理,获得新的应用题的解答方法。例如,“①汽车从甲地开往乙地,3小时行135千米。照这样计算,一共行了5小时,甲乙两地相距多少千米?②汽车从甲地开往乙地,3小时行135千米,照这样计算,还要行2小时才能到达乙地,甲乙两地相距多少千米?” (2)横向联系的:有些应用题基本数量 上一页 [1] [2] [3] 下一页 关系相同,只是已知条件有些变化,学生容易在已学的基础上类推出来,不需要作为新内容来讲,这样既调动学生思维的积极性,又可减少教学时间,收到举一反三的效果。例如,“①学校先买10瓶墨水,又买来8瓶。用去14瓶,还剩多少瓶?②学校买来3盒墨水,每盒6瓶。用去14瓶,还剩多少瓶?” (3)联系对比的:有些应用题的条件问题相似,解法容易混淆,可以通过联系对比使学生区分它们的异同,从而提高解题的正确率。例如,“① (三)重视教学解题的一般策略 这是培养学生解题能力的关键性问题。正如前边所讲的,会解答所学的应用题并不是最终的教学目的,而是通过所学的有代表性的应用题达到使学生掌握解题的一般策略。这在现今的信息社会尤为重要,要使学生成为能够处理信息的人,通过解答应用题培养学生解题的一般策略是一个重要途径。关于解题的一般策略,主要有以下几个方面: 1.条件和问题的收集。 为了解一道题首先要弄清楚题里给了哪些已知条件,要求解决什么问题。识别或收集条件和问题的过程也就是收集信息的过程,也是理解信息的过程。在低年级往往要求学生 上一页 [1] [2] [3] 下一页 2/2 首页 上一页 1 2
|